1,432 research outputs found

    Balancing Scalability and Uniformity in SAT Witness Generator

    Full text link
    Constrained-random simulation is the predominant approach used in the industry for functional verification of complex digital designs. The effectiveness of this approach depends on two key factors: the quality of constraints used to generate test vectors, and the randomness of solutions generated from a given set of constraints. In this paper, we focus on the second problem, and present an algorithm that significantly improves the state-of-the-art of (almost-)uniform generation of solutions of large Boolean constraints. Our algorithm provides strong theoretical guarantees on the uniformity of generated solutions and scales to problems involving hundreds of thousands of variables.Comment: This is a full version of DAC 2014 pape

    Squeezing in driven bimodal Bose-Einstein Condensates: Erratic driving versus noise

    Full text link
    We study the interplay of squeezing and phase randomization near the hyperbolic instability of a two-site Bose-Hubbard model in the Josephson interaction regime. We obtain results for the quantum Zeno suppression of squeezing, far beyond the previously found short time behavior. More importantly, we contrast the expected outcome with the case where randomization is induced by erratic driving with the same fluctuations as the quantum noise source, finding significant differences. These are related to the distribution of the squeezing factor, which has log-normal characteristics: hence its average is significantly different from its median due to the occurrence of rare events.Comment: 5 pages, 4 figure

    Distribution-Aware Sampling and Weighted Model Counting for SAT

    Full text link
    Given a CNF formula and a weight for each assignment of values to variables, two natural problems are weighted model counting and distribution-aware sampling of satisfying assignments. Both problems have a wide variety of important applications. Due to the inherent complexity of the exact versions of the problems, interest has focused on solving them approximately. Prior work in this area scaled only to small problems in practice, or failed to provide strong theoretical guarantees, or employed a computationally-expensive maximum a posteriori probability (MAP) oracle that assumes prior knowledge of a factored representation of the weight distribution. We present a novel approach that works with a black-box oracle for weights of assignments and requires only an {\NP}-oracle (in practice, a SAT-solver) to solve both the counting and sampling problems. Our approach works under mild assumptions on the distribution of weights of satisfying assignments, provides strong theoretical guarantees, and scales to problems involving several thousand variables. We also show that the assumptions can be significantly relaxed while improving computational efficiency if a factored representation of the weights is known.Comment: This is a full version of AAAI 2014 pape

    The statistical strength of experiments to reject local realism with photon pairs and inefficient detectors

    Full text link
    Because of the fundamental importance of Bell's theorem, a loophole-free demonstration of a violation of local realism (LR) is highly desirable. Here, we study violations of LR involving photon pairs. We quantify the experimental evidence against LR by using measures of statistical strength related to the Kullback-Leibler (KL) divergence, as suggested by van Dam et al. [W. van Dam, R. Gill and P. Grunwald, IEEE Trans. Inf. Theory. 51, 2812 (2005)]. Specifically, we analyze a test of LR with entangled states created from two independent polarized photons passing through a polarizing beam splitter. We numerically study the detection efficiency required to achieve a specified statistical strength for the rejection of LR depending on whether photon counters or detectors are used. Based on our results, we find that a test of LR free of the detection loophole requires photon counters with efficiencies of at least 89.71%, or photon detectors with efficiencies of at least 91.11%. For comparison, we also perform this analysis with ideal unbalanced Bell states, which are known to allow rejection of LR with detector efficiencies above 2/3.Comment: 18 pages, 3 figures, minor changes (add more references, replace the old plots, etc.)

    On Hashing-Based Approaches to Approximate DNF-Counting

    Get PDF
    Propositional model counting is a fundamental problem in artificial intelligence with a wide variety of applications, such as probabilistic inference, decision making under uncertainty, and probabilistic databases. Consequently, the problem is of theoretical as well as practical interest. When the constraints are expressed as DNF formulas, Monte Carlo-based techniques have been shown to provide a fully polynomial randomized approximation scheme (FPRAS). For CNF constraints, hashing-based approximation techniques have been demonstrated to be highly successful. Furthermore, it was shown that hashing-based techniques also yield an FPRAS for DNF counting without usage of Monte Carlo sampling. Our analysis, however, shows that the proposed hashing-based approach to DNF counting provides poor time complexity compared to the Monte Carlo-based DNF counting techniques. Given the success of hashing-based techniques for CNF constraints, it is natural to ask: Can hashing-based techniques provide an efficient FPRAS for DNF counting? In this paper, we provide a positive answer to this question. To this end, we introduce two novel algorithmic techniques: Symbolic Hashing and Stochastic Cell Counting, along with a new hash family of Row-Echelon hash functions. These innovations allow us to design a hashing-based FPRAS for DNF counting of similar complexity (up to polylog factors) as that of prior works. Furthermore, we expect these techniques to have potential applications beyond DNF counting

    Weak MSO+U with Path Quantifiers over Infinite Trees

    Full text link
    This paper shows that over infinite trees, satisfiability is decidable for weak monadic second-order logic extended by the unbounding quantifier U and quantification over infinite paths. The proof is by reduction to emptiness for a certain automaton model, while emptiness for the automaton model is decided using profinite trees.Comment: version of an ICALP 2014 paper with appendice

    Bose-enhanced chemistry: Amplification of selectivity in the dissociation of molecular Bose-Einstein condensates

    Full text link
    We study the photodissociation chemistry of a quantum degenerate gas of bosonic triatomic ABCABC molecules, assuming two open rearrangement channels (AB+CAB+C or A+BCA+BC). The equations of motion are equivalent to those of a parametric multimode laser, resulting in an exponential buildup of macroscopic mode populations. By exponentially amplifying a small differential in the single-particle rate-coefficients, Bose stimulation leads to a nearly complete selectivity of the collective NN-body process, indicating a novel type of ultra-selective quantum degenerate chemistry.Comment: 5 pages, 3 figure
    corecore